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Abstract

Due to the high cost and reliability of sensors, the designers of a pump reduce the needed
number of sensors for the estimation of the feasible operating point as much as possible.
The major challenge to obtain a good estimation is the low amount of data available. Using
this amount of data, the performance of the estimation method is not enough to satisfy
the client requests. To solve this problem of scarcity of data, getting high quality data
is important to obtain a good estimation. Based on these considerations, we develop an
active learning framework for estimating the operating point of a Modular Multi Pump
used in energy field. In particular we focus on the estimation of the surge distance. We
apply Active learning to estimate the surge distance with minimal dataset. Results report
that active learning is a valuable technique also for real application.

Keywords: active learning, regression, pump, energy

1. Introduction

In subsea energy field, we often apply boosting solutions to increase the pressure of the
fluid extracted to overcome the continuous pressure decline that affects the real production.
Common best practices in presence of multiphase fluid are based on the combination of a
separator and a single-phase compressor underwater. To reduce complexity of the equip-
ment, reduce footprint and simplify connections, a multiphase pump (Figure 1a) able to
directly process and compress the liquid and gas mixture has been identified. To control the
multiphase pump, the controller needs to know its operating point, in terms of Volumetric
inlet flow (Qin) processed, Gas Volume Fraction (GVF) and fluid composition. The estima-
tion of these parameters allows the calculation of the surge distance and then to control the
pump desired behaviors. The surge distance is the difference of the compressor operating
point from the chosen Surge Limit Line (SLL) (Fig. 1b). The controller of the pump needs
to keep the operating point 5-10% distant from SLL to have enough time to recover. The
estimation of the surge distance reduces the risk for the pump of the “Surge” phenomenon
Hafaifa et al. (2014)Semlitsch and Mihaescu (2016). This phenomenon is an operating point
where downstream pressure of pump discharge rapidly increases due to a decrease in flow
demand from the pump outlet.
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(a) 12-stage pump module.
(b) Distance of operating point of the compressor
from the surge limit line (SLL)

Figure 1: Pump module and surge phenomenon.

The problem of estimating the operating point for multi pump systems is challenging
because the number of sensors is limited. This is due to the high cost of sensors and
strict requirements for maintenance minimization of the system deployed on the seabed.
Therefore, only a limited subset of measurements is available, while all the others need to
be properly estimated.

In order to estimate the operating point and avoid the surge phenomenon, a first solution
is to use physical models (PHM) in the design of the pump. However, brute force design
optimization using PHM is an intensive and long running process. Multi pumps have
an increasing number of design parameters and looking for best ones (using brute-force
simulations) becomes increasingly expensive. For this reason, we developed a surrogate
model able to estimate the operating point of the modular multi pump. To obtain an
accurate model from minimal training data, we developed an active learning approach
Zuluaga et al. (2013); Das et al. (2016); Settles (2009) in which training points are selected
based on error measure as well as uncertainty measure through which we can reduce the
number of training points by more than an order of magnitude for a neural network surrogate
model Xiang et al. (2020); Boyd and Vandenberghe (2004); Jones et al. (2021); Heavlin
(2021). Moreover, performing real tests is a demanding and costly process and we need to
optimize our Design of Experiment (DoE) Palermo et al. (2009).

1.1 Related Works

Active learning has been extensively used for experiment design and optimization Yu et al. (2006);
Settles (2009); Zuluaga et al. (2013); Das et al. (2016); Jamieson et al. (2015); Jones et al. (2021).
Indeed, Yu et al. (2006) has extensively demonstrated the efficiency of active learning to select the
most informative experiment on synthetic data; while, Jamieson et al. (2015) proposed a frame-
work to work with real application and to collect large-scale datasets. Different techniques have
been proposed to apply active learning to real application (see Sverchkov and Craven (2017) for a
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review), suggesting one optimal strategy Jones et al. (2021) to maximize the benefit of getting new
experiment.

In this paper we aim to apply active learning methodology to improve design capabilities of
pump and compressors. To validate the active learning methodology, we used datasets generated by
PHM and we limited to a realistic case (no more than 10% samples).

2. Dataset

The dataset used to validate the approach is a Design of Experiment produced by running the
design tool PHM. Data are produced for the first stage only. Data cover extensively the parameter
space. For instance, inlet temperature takes all the values between 293.15 K and 353.15 K. We
analyze the following data (see Table 4): - Input data: inlet temperature (Tin), inlet pressure
(Pin), rotational speed (N), differential pressure (∆P = Pin − Pout) and total consumed power
(Power) - Output data: surge distance (SD) - Output data (not used for our experiments): inlet
gas volume fraction (GV Fin), outlet gas volume fraction (GV Fout), inlet massflow (Qin), outlet
massflow (Qout). Surge Distance is computed from inlet massflow using the following equations:

SD = 100
ϕ−ϕsurge

ϕsurge
with ϕsurge = 0.076 and ϕ = Qin

2.93 10−3 Nspeed
. Examples of input and output data

is shown on figure 4. Input variables are cross correlated except Tin and Pin. Output variables are
not correlated with Tin and Pin and only slightly correlated with N , ∆P and Power.

We expect Surge distance to be as well predicted as inlet Massflow given that it can be derived
from it by an algebraic equation. Yet, because we use the difference of two close numbers, accuracy
requirements become much more challenging for surge distance than it is for inlet massflow.

Dataset contains 63116 samples. We use the full dataset for model selection (80% train, 20% test
and validation, see 3.1). Only a limited number of samples is used for training the active learning
model because in real environment we cannot leverage in such large dataset.

3. Model

We build three models to find the best architecture for this dataset. These models require a big
amount of data to find a good model and in real environment we cannot leverage in such large
dataset. For this reason, we developed an active learning method using only a limited number of
samples and compare it with the best architecture. The active learning method presented in this
paper requires considerably less data to find an accurate estimation model.

3.1 Model selection

We apply XGBoost Chen and Guestrin (2016) to test a boosting mechanism as baseline. Because
data on this project are bound to be timeseries, the second model that we developed was Long
Short-Term Memory (LSTM) Hochreiter S (1997) with one layer. Indeed, we’ve been working on
synthetic data coming from a DOE but in the future, data will be on site measurements. The third
model that we developed is a multilayer perceptron (MLP) with two layers as an intermediate model
between XGBoost and LSTM (see Appendix 5 for further details).

3.2 Active Learning

We apply various regression models on this dataset. The results analysis of residuals show
heteroscedasticity Wakefield (2013). We also notice that all points in the dataset may
not be useful for the prediction of the output. Thus we explore strategies and efficient
approaches to select data points for which MSE can be minimized. We let algorithm choose
the potential data points.
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Figure 2: Active Learning Process

Given that most of the active learning research happens in the direction of pool based
approach, we use this method (Figure 2). It helps extracting samples based on information
measure. Pool based technologies reduce the dimension of data while selecting those that
have most information. The idea is to rank the samples based on criteria chosen by the
model and query the most effective data points to the model when building it 2). We use the
Actively learned model (AL) library Ghosh et al. (2021) UQ360. This AL model includes
an ensemble of Neural Networks for training and predictions which increases its efficiency
Lakshminarayanan et al. (2016); Thebelt et al. (2022). We use five Neural Networks on
the training data with different random batches on each training iteration Goodfellow et al.
(2016) for this experiment. We implement the neural network ensemble using pytorch
Paszke et al. (2017) on a GPU machine NVIDIA DGX-1. It is made of an input layer of
five nodes, three hidden layers with 256 relu and one last layer which consists of a scaled
hyperbolic tangent activation function and one unit with a softplus activation function
Goodfellow et al. (2016). The algorithm returns the mean and log variance (Algorithm 1).
The cost function is negative-log-likelihood of a gaussian function. The mean and variance
of the ensemble are the pooled mean and variance. The optimizer is Adam. The learning
rate is 0.001 and after the tenth epoch, the learning rate is decayed by a factor of 0.99.

4. Results

4.1 Model Selection

We compute the scores for the prediction of the surge distance SD. To train the model we
use 50492 samples and we test it using the remaining 12624 samples. Based on our previous
experiences in energy pump design and client requests, we define as acceptance criteria that
the error of SD prediction should be < ±4%. We define different metrics to better analyze
our results. R2 is convenient because it is independent of the order of magnitude of the
variable. We quickly see if it is close to 1. Yet, even a seemingly very good R2 can lead to
results that don’t reach our acceptance criteria. Therefore, we also take a look at RMSE
which is a standard metrics. Max Error is useful to have a feeling of how bad our model
can do. We really look for the worst case with this metrics. Finally, we check the Mean
Absolute Percentage Error (MAPE), because our criteria is bound to a relative error. At
first, we also checked the Maximum Percentage Error, but this one becomes way too large
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when surge distance is close to 0. As a general fact, relative errors are cumbersome because
they can become arbitrary large. At the end, because we don’t reach the expected +/- 4%
error for all the data, we check the amount of them reaching this goal to figure out which
model is the best one.

Table 1 reports errors metric.

Model LSTM XGBoost MLP

Max Error 24.8694 29.3937 29.9472
RMSE 2.6096 4.8438 2.8075
R2 0.9832 0.9534 0.9843
MAPE 0.6725 3.2108 0.4468

Acceptance Criteria
Accuracy 52.5% 49.7% 61.3%

Table 1: LSTM, XGBoost and MLP model errors.

Overall, we see that XGBoost model is doing sensitively worst on Rsquared, RMSE
and MAPE metrics. Indeed, this is the simplest model and we expected it to be less accurate
than the others. LSTM model is slightly better than MLP model for RMSE, equivalent
for Rsquared and slightly worst for MAPE. These metrics are not enough to disentangle
these models. The most important evaluation is on the acceptance criteria defined before.
For XGBoost model, we achieve ± 4% of error for 49.7% of data for Surge Distance. For
LSTM model, we achieve ± 4% of error for 52.5% of data for Surge Distance (SD). For
MLP model, we achieve ± 4% of error for 61.3% of data for Surge Distance. XGBoost
and LSTM give about the same level of accuracy for surge distance, while the MLP achieves
higher accuracy. Figure 3a shows predicted vs ground truth. With these results, we already
tend to prefer MLP model. We’ll now check how these models behave with a reduced
number of samples before we make a final choice on the model. We train the XGB, MLP
and LSTM models on data chunks of similar size as for AL expt. We then apply them on
test data and show results in the following table. From the table we see that MLP model
performs better than the other two.

Partition 50 100 250 500 750 1000 1500 2000

XGBoost 8.0984 8.5688 7.7655 7.0576 4.9501 5.0289 5.6088 6.1381
MLP 1.9839 1.8783 2.2285 1.9265 1.9245 1.8308 1.8441 1.8902
LSTM 6.8740 6.8332 6.6250 6.2936 5.7186 5.6452 5.5331 5.1076

Table 2: XGBoost, MLP and LSTM errors to predict surge distance with reduced training
dataset.

Given these results, we choose MLP to predict surge distance for active learning exper-
iments. In addition, we use an ensemble of MLPs to improve results.
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Partition 1 2 3 4 5 6 7 8

MLP 0.99 0.98 0.98 0.97 0.95 0.90 0.80 0.65
Active learning 0.93 0.92 0.91 0.89 0.83 0.73 0.60 0.56

Table 3: Active Learning and MLP errors to predict surge distance.

(a) MLP prediction of Surge Distance. Pre-
dicted values are shown on the y axis with
respect to the ground truth x.

(b) Active Learning model results. AL
achieves good performances even after only
1000 samples used for training.

Figure 3: Results

4.2 Active learning

To assess AL as a valuable method for real application (when we cannot test thousands of
configurations), we select a limited number of samples from our dataset (n = 2200 samples).

We compare the performance of the baseline MLP model with active learning MLP for
the same set of data points and the results derived out of the active learning model are
promising (see Table 3). Figure 3b shows the performance of the model trained with active
learning and baseline (random selection of train sample). Test set is the same for both
cases. AL achieves good performances even after only 1000 samples used for training. Note
(although not shown in the figure) that the simple MLP model achieves the performance of
AL using about 3000 samples, which is not acceptable for our use case. Finally, we could
face issues when going from synthetic data to measured ones. In that case, we would need
to retrain the model for each machine and active learning would help us reduce the cost of
model retraining by limiting the amount of necessary data.

5. Conclusion

We apply active learning to explore the capability of building a surrogate model and improving our
design capability. We want to build a surrogate model in order to reduce the time to perform design
parameter optimization. Acquiring data from a real test campaign is expensive and costly, therefore
we design an active learning framework to train the most accurate model possible with as few data
points as possible. Results are very promising suggesting that active learning can be used to define
design of experiment for energy applications in an efficient and less expensive way.
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Appendix A - Symbols

Variable Description I/O

Tin inlet temperature input
Pin inlet pressure input
Nspeed rotational speed input
∆P = Pin - Pout differential pressure input
Power total consumed power input

SD surge distance output
Qin inlet massflow out of scope
GV Fin inlet gas volume fraction out of scope
GV Fout outlet gas volume fraction out of scope
Qout outlet massflow out of scope

Table 4: Measures: input (top) and output (bottom).
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Appendix B - Algorithm

We want to compare the performance of the AL model with a baseline. In the baseline, batches
of data are sampled randomly while they are selected with the higher variance and thus with more
information in the case of AL approach. Number of samples, configuration and number of iterations
are the same for AL and baseline models. Baseline model gives the predictions from which error
is calculated. AL model outputs error estimate which is a measure of uncertainty and in this case
variance, apart from the predictions Lakshminarayanan et al. (2016).

For the AL model, we add points with most information together with their labels and remove
them from the pool set. As training data set is increased, model is re-trained. This process is
repeated with the given number of iterations (Algorithm 1). We use the same datasets as those
explored previously when we selected the underlying model.

Algorithm 1 Active Learning Model Algorithm

1: Input: Initial set of points(T), number of iterations, M,K
2: Output: The regression model, predictions, variances
3: Partition the data into pool and test sets.
4: Divide the pool data into train set which has initial set of points (T), and validation

set where size of the train set << size of the validation set
5: Train the model E on the initial training set T
6: for i = 1, 2, . . . do
7: Ri = choose M × K points from the pool
8: Compute the error measures using E
9: Select K points in Ri which have highest variance

10: Add those K points to the existing train set
11: Train the model Ei = 1 on this expanded training set Ti = 1
12: Remove these K points from the pool
13: end for

Appendix C - Model Details

For XGBoost, we run a random search to tune the hyper-parameters for the Surge Distance pre-
diction with learning rate = 0.1. We use as boosting parameter gbtree and as standard evaluation
metrics RMSE. The resulting optimal model consists of 700 estimators and has a maximum depth of
8 with minimum child weight of 9. For the boosting hyperparameters we choose a step size shrink-
age eta of 0.1, a minimum loss reduction gamma of 0.3. Subsample parameter is set to 0.6 which
helps prevent overfitting and balances the relatively large value of maximum depth which instead
could ease overfitting. Column subsampling by tree is set to 1.0 which is also the default. And
the learning task objective is the regression with squared loss. For Long Short-Term Memory
(LSTM) model, we run partial grid searches to tune the hyperparameters for the Surge Distance
prediction. Some parameters such as kernel and recurrent regularizers are fixed without the need
to check all combinations with others because we quickly see that value 0 gives much better results
than any other one. LSTM model consists of one LSTM layer and three dense layers. They con-
tain 32 neurons each. A last dense layer is used for output. L1-L2 regularizer as well as kernel
and recurrent regularizers are set to 0. We use a relatively small learning rate of 0.0005 with 5000
epochs. We apply standard Optimizer Adam, activation is relu for LSTM and dense layers. For
multilayer perceptron (MLP), we stick to a relatively basic architecture because we expect our
dataset doesn’t require a too complex architecture and we want a depth in between XGboost and
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LSTM. Hyperparameters tuning is done manually from experience. We use two units made of one
dense layer, one dropout layer and one batch normalization layer. In the first unit each layer contains
128 neurons. In the second one, they contain 64 neurons. The third dense layer has just one neuron
for output. Dropout magnitude is 5%. Activation is always relu, optimizer is RMSprop. We use the
Mean Absolute Error for the loss and our learning rate is 0.01 with a decay of 0.1.

Appendix D - Data Sample

Figure 4: Examples of MCP data.
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